Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(2p3)2(2p - 3)^2

Full solution

Q. Find the square. Simplify your answer.\newline(2p3)2(2p - 3)^2
  1. Identify Binomial and Formula: Identify the binomial to be squared and the special case formula to use.\newlineThe given binomial is (2p3)(2p - 3), and we need to square it. The special case formula for the square of a binomial is (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2.
  2. Identify aa and bb: Identify the values of aa and bb in the binomial (2p3)(2p - 3). In the binomial (2p3)(2p - 3), aa is 2p2p and bb is 33.
  3. Apply Binomial Formula: Apply the square of a binomial formula to expand (2p3)2(2p - 3)^2. Using the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2, we get: (2p3)2=(2p)22(2p)3+(3)2(2p - 3)^2 = (2p)^2 - 2\cdot(2p)\cdot3 + (3)^2
  4. Simplify Terms: Simplify each term in the expansion.\newline(2p)2=4p2(2p)^2 = 4p^2 (since 2p×2p=4p22p \times 2p = 4p^2)\newline2×(2p)×3=12p-2\times(2p)\times3 = -12p (since 2×2p×3=12p-2 \times 2p \times 3 = -12p)\newline(3)2=9(3)^2 = 9 (since 3×3=93 \times 3 = 9)
  5. Combine Simplified Terms: Combine the simplified terms to get the final answer.\newline(2p3)2=4p212p+9(2p - 3)^2 = 4p^2 - 12p + 9

More problems from Multiply two binomials: special cases