Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The given expression is \(2k - 1)^2\, which is in the form of a - b)^\(2\.Special case: a - b)^\(2 = a^2 - 2ab + b^2\
Identify values of a and b: Identify the values of a and b in the binomial. Compare (2k−1)2 with (a−b)2. a=2kb=1
Apply binomial square formula: Apply the square of a binomial formula to expand (2k−1)2.(2k−1)2=(2k)2−2(2k)(1)+(1)2
Simplify each term: Simplify each term in the expansion.(2k)2−2(2k)(1)+(1)2= (2k⋅2k)−(2⋅2⋅k)+(1⋅1)= 4k2−4k+1
More problems from Multiply two binomials: special cases