Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the square. Simplify your answer.\newline(2h2)2(2h - 2)^2

Full solution

Q. Find the square. Simplify your answer.\newline(2h2)2(2h - 2)^2
  1. Identify Binomial Form: We need to find the square of the binomial (2h2)(2h - 2). This is in the form of (ab)2(a - b)^2, which is a special case of binomial squares.\newlineSpecial case: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
  2. Determine aa and bb: Identify the values of aa and bb in the binomial (2h2)(2h - 2). Compare (2h2)2(2h - 2)^2 with (ab)2(a - b)^2. a=2ha = 2h b=2b = 2
  3. Apply Binomial Square Formula: Apply the square of a binomial formula to expand (2h2)2(2h - 2)^2.\newline(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2\newline(2h2)2=(2h)22(2h)(2)+22(2h - 2)^2 = (2h)^2 - 2(2h)(2) + 2^2
  4. Simplify Expression: Simplify (2h)22(2h)(2)+22.(2h)^2 - 2(2h)(2) + 2^2.(2h)22(2h)(2)+22(2h)^2 - 2(2h)(2) + 2^2=(2h2h)(222)h+22= (2h \cdot 2h) - (2 \cdot 2 \cdot 2)h + 2 \cdot 2=4h28h+4= 4h^2 - 8h + 4

More problems from Multiply two binomials: special cases