Identify binomial and formula: Identify the binomial to be squared and the special case formula to use.The binomial to be squared is (2g+2), and it is in the form of (a+b)2.Special case: (a+b)2=a2+2ab+b2
Identify values of a and b: Identify the values of a and b in the binomial (2g+2). Comparing (2g+2) with (a+b), we find that a=2g and b=2.
Apply binomial square formula: Apply the square of a binomial formula to expand (2g+2)2. Using the formula (a+b)2=a2+2ab+b2, we get: (2g+2)2=(2g)2+2(2g)(2)+(2)2
Simplify expression: Simplify the expression (2g)2+2(2g)(2)+(2)2.(2g)2+2(2g)(2)+(2)2=(2g×2g)+(2×2×2)g+(2×2)=4g2+8g+4
More problems from Multiply two binomials: special cases