Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the solution of the system of equations.

{:[8x+2y=12],[-4x+y=-26]:}

Find the solution of the system of equations.\newline8x+2y=124x+y=26 \begin{array}{l} 8 x+2 y=12 \\ -4 x+y=-26 \end{array}

Full solution

Q. Find the solution of the system of equations.\newline8x+2y=124x+y=26 \begin{array}{l} 8 x+2 y=12 \\ -4 x+y=-26 \end{array}
  1. Write Equations: Write down the system of equations to be solved.\newlineWe have the following system of equations:\newline8x+2y=128x + 2y = 12\newline4x+y=26-4x + y = -26
  2. Solve for y: Solve the second equation for y.\newlineWe can express yy in terms of xx from the second equation:\newline4x+y=26-4x + y = -26\newliney=26+4xy = -26 + 4x
  3. Substitute in First Equation: Substitute the expression for yy from Step 22 into the first equation.\newlineSubstituting y=26+4xy = -26 + 4x into 8x+2y=128x + 2y = 12 gives us:\newline8x+2(26+4x)=128x + 2(-26 + 4x) = 12
  4. Simplify and Solve for x: Simplify the equation and solve for x.\newline8x52+8x=128x - 52 + 8x = 12\newline16x52=1216x - 52 = 12\newline16x=12+5216x = 12 + 52\newline16x=6416x = 64\newlinex=6416x = \frac{64}{16}\newlinex=4x = 4
  5. Substitute xx into yy expression: Substitute the value of xx back into the expression for yy from Step 22.\newlineSubstituting x=4x = 4 into y=26+4xy = -26 + 4x gives us:\newliney=26+4(4)y = -26 + 4(4)\newliney=26+16y = -26 + 16\newliney=10y = -10