Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the solution of the system of equations.

{:[6x-y=-30],[-3x+6y=-18]:}

(◻,◻)

Find the solution of the system of equations.\newline6xy=303x+6y=18 \begin{array}{r} 6 x-y=-30 \\ -3 x+6 y=-18 \end{array} \newline(,) (\square, \square)

Full solution

Q. Find the solution of the system of equations.\newline6xy=303x+6y=18 \begin{array}{r} 6 x-y=-30 \\ -3 x+6 y=-18 \end{array} \newline(,) (\square, \square)
  1. Write Equations: Write down the system of equations to be solved.\newlineWe have the system:\newline6xy=306x - y = -30\newline3x+6y=18-3x + 6y = -18\newlineWe will use the method of substitution or elimination to solve this system.
  2. Choose Method: Decide on a method to solve the system.\newlineWe can use the elimination method by multiplying the second equation by 22 to make the coefficients of xx the same in both equations.
  3. Multiply Second Equation: Multiply the second equation by 22. \newline2(3x+6y)=2(18)2(-3x + 6y) = 2(-18)\newlineThis gives us:\newline6x+12y=36-6x + 12y = -36\newlineNow we have the system:\newline6xy=306x - y = -30\newline6x+12y=36-6x + 12y = -36
  4. Add Equations: Add the two equations together to eliminate xx.\newline(6xy)+(6x+12y)=30+(36)(6x - y) + (-6x + 12y) = -30 + (-36)\newlineThis simplifies to:\newline11y=6611y = -66
  5. Solve for y: Solve for y.\newlineDivide both sides by 1111 to find the value of yy.\newliney=66/11y = -66 / 11\newliney=6y = -6
  6. Substitute for x: Substitute the value of yy into one of the original equations to solve for xx. We can use the first equation: 6xy=306x - y = -30 Substitute y=6y = -6: 6x(6)=306x - (-6) = -30 6x+6=306x + 6 = -30
  7. Solve for x: Solve for x.\newlineSubtract 66 from both sides to isolate xx:\newline6x=3066x = -30 - 6\newline6x=366x = -36\newlineDivide both sides by 66:\newlinex=36/6x = -36 / 6\newlinex=6x = -6