Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer. \newline(r3)(r+3)(r - 3)(r + 3)

Full solution

Q. Find the product. Simplify your answer. \newline(r3)(r+3)(r - 3)(r + 3)
  1. Identify special case: Identify the special case that applies here.\newlineThe expression (r3)(r+3)(r - 3)(r + 3) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (r3)(r+3)(r - 3)(r + 3) with (ab)(a+b)(a - b)(a + b). a=ra = r b=3b = 3
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (r3)(r+3)(r - 3)(r + 3).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(r3)(r+3)=r232(r - 3)(r + 3) = r^2 - 3^2
  4. Simplify expression: Simplify r232r^2 - 3^2.
    r232=r2(3×3)r^2 - 3^2 = r^2 - (3 \times 3)
    r232=r29r^2 - 3^2 = r^2 - 9

More problems from Multiply two binomials: special cases