Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(q3)(4q+1)(q - 3)(4q + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(q3)(4q+1)(q - 3)(4q + 1)
  1. Apply Distributive Property: Apply the distributive property to multiply the two binomials (q3)(q - 3) and (4q+1)(4q + 1).\newlineDistribute (4q+1)(4q + 1) with qq and 3-3.\newline(q3)(4q+1)=q(4q+1)3(4q+1)(q - 3)(4q + 1) = q(4q + 1) - 3(4q + 1)
  2. Simplify q(4q+1)q(4q + 1): Simplify q(4q+1)q(4q + 1).\newlineMultiply qq to 4q4q and 11.\newlineq(4q+1)=q(4q)+q(1)=4q2+qq(4q + 1) = q(4q) + q(1) = 4q^2 + q
  3. Simplify 3(4q+1)-3(4q + 1): Simplify 3(4q+1)-3(4q + 1).\newlineMultiply 3-3 to 4q4q and 11.\newline3(4q+1)=3(4q)3(1)=12q3-3(4q + 1) = -3(4q) - 3(1) = -12q - 3
  4. Combine Results: Combine the results from Step 22 and Step 33.\newline4q2+q12q34q^2 + q - 12q - 3\newlineCombine like terms.\newline4q2+q12q=4q211q4q^2 + q - 12q = 4q^2 - 11q\newlineSo, the expression becomes 4q211q34q^2 - 11q - 3.

More problems from Multiply two binomials