Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(n1)(n+1)(n - 1)(n + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(n1)(n+1)(n - 1)(n + 1)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (n1)(n+1)(n - 1)(n + 1) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (n1)(n+1)(n - 1)(n + 1) with (ab)(a+b)(a - b)(a + b). a=na = n b=1b = 1
  3. Apply Formula: Apply the difference of squares formula to expand (n1)(n+1)(n - 1)(n + 1).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(n1)(n+1)=n212(n - 1)(n + 1) = n^2 - 1^2
  4. Simplify Expression: Simplify n212n^2 - 1^2. \newlinen212=n21n^2 - 1^2 = n^2 - 1

More problems from Multiply two binomials: special cases