Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(m1)(m+1)(m - 1)(m + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(m1)(m+1)(m - 1)(m + 1)
  1. Identify special case: Identify the special case that applies here.\newlineThe expression (m1)(m+1)(m - 1)(m + 1) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (m1)(m+1)(m - 1)(m + 1) with (ab)(a+b)(a - b)(a + b). a=ma = m b=1b = 1
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (m1)(m+1)(m - 1)(m + 1).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(m1)(m+1)=m212(m - 1)(m + 1) = m^2 - 1^2
  4. Simplify expression: Simplify m212m^2 - 1^2. \newlinem212=m21m^2 - 1^2 = m^2 - 1

More problems from Multiply two binomials: special cases