Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(k2)(k+2)(k - 2)(k + 2)

Full solution

Q. Find the product. Simplify your answer.\newline(k2)(k+2)(k - 2)(k + 2)
  1. Identify Special Case: Identify the special case for the product (k2)(k+2)(k - 2)(k + 2).\newlineThis product is in the form of (ab)(a+b)(a - b)(a + b), which is a difference of squares.\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (k2)(k+2)(k - 2)(k + 2) with (ab)(a+b)(a - b)(a + b). a=ka = k b=2b = 2
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (k2)(k+2)(k - 2)(k + 2).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(k2)(k+2)=k222(k - 2)(k + 2) = k^2 - 2^2
  4. Simplify the Expression: Simplify k222k^2 - 2^2. \newlinek222=k24k^2 - 2^2 = k^2 - 4

More problems from Multiply two binomials: special cases