Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(k+1)(k3)(k + 1)(k - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(k+1)(k3)(k + 1)(k - 3)
  1. Distribute kk in binomial: Now, we will distribute kk to both terms in the binomial (k3)(k - 3).\newlinek(k3)=kkk3k(k - 3) = k\cdot k - k\cdot 3\newline=k23k= k^2 - 3k
  2. Distribute 11 in binomial: Next, we will distribute 11 to both terms in the binomial (k3)(k - 3). \newline1(k3)=1k131(k - 3) = 1\cdot k - 1\cdot 3\newline=k3= k - 3
  3. Combine distributed terms: Now, we will combine the results from the previous steps to get the full expression. \newline(k+1)(k3)=(k23k)+(k3)(k + 1)(k - 3) = (k^2 - 3k) + (k - 3)
  4. Simplify expression: Finally, we will combine like terms to simplify the expression. \newlinek23k+k3k^2 - 3k + k - 3\newline= k22k3k^2 - 2k - 3

More problems from Multiply two binomials