Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(j4)(3j3)(j - 4)(3j - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(j4)(3j3)(j - 4)(3j - 3)
  1. Apply Distributive Property: Apply the distributive property to multiply (j4)(j - 4) by each term in (3j3)(3j - 3).(j4)(3j3)=j(3j3)4(3j3)(j - 4)(3j - 3) = j(3j - 3) - 4(3j - 3)
  2. Simplify j(3j3)j(3j - 3): Simplify j(3j3)j(3j - 3).j(3j3)=j(3j)j(3)=3j23jj(3j - 3) = j(3j) - j(3) = 3j^2 - 3j
  3. Simplify 4(3j3)-4(3j - 3): Simplify 4(3j3)-4(3j - 3).\newline4(3j3)=4(3j)+4(3)=12j+12-4(3j - 3) = -4(3j) + 4(3) = -12j + 12
  4. Combine Simplified Terms: Combine the simplified terms from the previous steps.\newline(3j23j)+(12j+12)=3j23j12j+12(3j^2 - 3j) + (-12j + 12) = 3j^2 - 3j - 12j + 12
  5. Combine Like Terms: Combine like terms.\newline3j23j12j+12=3j215j+123j^2 - 3j - 12j + 12 = 3j^2 - 15j + 12

More problems from Multiply two binomials