Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(f3)(f+3)(f - 3)(f + 3)

Full solution

Q. Find the product. Simplify your answer.\newline(f3)(f+3)(f - 3)(f + 3)
  1. Identify special case: Identify the special case for the product (f3)(f+3)(f - 3)(f + 3). This product is in the form of (ab)(a+b)(a - b)(a + b), which is a difference of squares. Special case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (f3)(f+3)(f - 3)(f + 3) with (ab)(a+b)(a - b)(a + b). a=fa = f b=3b = 3
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (f3)(f+3)(f - 3)(f + 3).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(f3)(f+3)=f232(f - 3)(f + 3) = f^2 - 3^2
  4. Simplify expression: Simplify f232f^2 - 3^2. \newlinef232=f2(3×3)f^2 - 3^2 = f^2 - (3 \times 3)\newlinef232=f29f^2 - 3^2 = f^2 - 9

More problems from Multiply two binomials: special cases