Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(b+3)(b3)(b + 3)(b - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(b+3)(b3)(b + 3)(b - 3)
  1. Identify special case: Identify the special case for the product (b+3)(b3)(b + 3)(b - 3). This product is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares. Special case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (b+3)(b3)(b + 3)(b - 3) with (a+b)(ab)(a + b)(a - b). a=ba = b b=3b = 3
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (b+3)(b3)(b + 3)(b - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(b+3)(b3)=b232(b + 3)(b - 3) = b^2 - 3^2
  4. Simplify expression: Simplify b232b^2 - 3^2. \newlineb232=b29b^2 - 3^2 = b^2 - 9

More problems from Multiply two binomials: special cases