Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4y+4)(4y4)(4y + 4)(4y - 4)

Full solution

Q. Find the product. Simplify your answer.\newline(4y+4)(4y4)(4y + 4)(4y - 4)
  1. Identify Form of Expression: Identify the form of the expression.\newlineThe expression (4y+4)(4y4)(4y + 4)(4y - 4) is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares.\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (4y+4)(4y4)(4y + 4)(4y - 4) with (a+b)(ab)(a + b)(a - b). a=4ya = 4y b=4b = 4
  3. Apply Difference of Squares Formula: Apply the difference of squares formula.\newlineUsing the values of aa and bb, we apply the formula (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2.\newline(4y+4)(4y4)=(4y)2(4)2(4y + 4)(4y - 4) = (4y)^2 - (4)^2
  4. Simplify the Expression: Simplify the expression.\newline(4y)2(4)2(4y)^2 - (4)^2\newline= (4y×4y)(4×4)(4y \times 4y) - (4 \times 4)\newline= 16y21616y^2 - 16

More problems from Multiply two binomials: special cases