Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4w2)(4w+2)(4w - 2)(4w + 2)

Full solution

Q. Find the product. Simplify your answer.\newline(4w2)(4w+2)(4w - 2)(4w + 2)
  1. Identify Form: Identify the form of the expression.\newlineThe expression (4w2)(4w+2)(4w - 2)(4w + 2) is in the form of (ab)(a+b)(a - b)(a + b).\newlineThis is a special case known as the difference of squares.\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (4w2)(4w+2)(4w - 2)(4w + 2) with (ab)(a+b)(a - b)(a + b). a=4wa = 4w b=2b = 2
  3. Apply Formula: Apply the difference of squares formula.\newlineUsing the values of aa and bb, we can expand (4w2)(4w+2)(4w - 2)(4w + 2) using the formula.\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(4w2)(4w+2)=(4w)2(2)2(4w - 2)(4w + 2) = (4w)^2 - (2)^2
  4. Simplify Expression: Simplify the expression.\newline(4w)2(2)2(4w)^2 - (2)^2\newline= (4w×4w)(2×2)(4w \times 4w) - (2 \times 2)\newline= 16w2416w^2 - 4

More problems from Multiply two binomials: special cases