Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4w+2)(4w2)(4w + 2)(4w - 2)

Full solution

Q. Find the product. Simplify your answer.\newline(4w+2)(4w2)(4w + 2)(4w - 2)
  1. Identify special case: Identify the special case for the product (4w+2)(4w2)(4w + 2)(4w - 2). This product is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares. Special case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (4w+2)(4w2)(4w + 2)(4w - 2) with (a+b)(ab)(a + b)(a - b). a=4wa = 4w b=2b = 2
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (4w+2)(4w2)(4w + 2)(4w - 2).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(4w+2)(4w2)=(4w)2(2)2(4w + 2)(4w - 2) = (4w)^2 - (2)^2
  4. Simplify expression: Simplify (4w)2(2)2.(4w)^2 - (2)^2.(4w)2(2)2=(4w×4w)(2×2)(4w)^2 - (2)^2 = (4w \times 4w) - (2 \times 2)=16w24= 16w^2 - 4

More problems from Multiply two binomials: special cases