Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4s2)(4s+2)(4s - 2)(4s + 2)

Full solution

Q. Find the product. Simplify your answer.\newline(4s2)(4s+2)(4s - 2)(4s + 2)
  1. Identify special case: Identify the special case for the product (4s2)(4s+2)(4s - 2)(4s + 2). This product is in the form of (ab)(a+b)(a - b)(a + b), which is a difference of squares. Special case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (4s2)(4s+2)(4s - 2)(4s + 2) with (ab)(a+b)(a - b)(a + b). a=4sa = 4s b=2b = 2
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (4s2)(4s+2)(4s - 2)(4s + 2).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(4s2)(4s+2)=(4s)2(2)2(4s - 2)(4s + 2) = (4s)^2 - (2)^2
  4. Simplify expression: Simplify (4s)2(2)2.(4s)^2 - (2)^2.(4s)2(2)2=(4s×4s)(2×2)(4s)^2 - (2)^2 = (4s \times 4s) - (2 \times 2)=16s24= 16s^2 - 4

More problems from Multiply two binomials: special cases