Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4q+4)(4q4)(4q + 4)(4q - 4)

Full solution

Q. Find the product. Simplify your answer.\newline(4q+4)(4q4)(4q + 4)(4q - 4)
  1. Identify special case: Identify the special case for the product (4q+4)(4q4)(4q + 4)(4q - 4). This product is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares. Special case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (4q+4)(4q4)(4q + 4)(4q - 4) with (a+b)(ab)(a + b)(a - b). a=4qa = 4q b=4b = 4
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (4q+4)(4q4)(4q + 4)(4q - 4).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(4q+4)(4q4)=(4q)2(4)2(4q + 4)(4q - 4) = (4q)^2 - (4)^2
  4. Simplify expression: Simplify (\(4q)^22 - (44)^22.(\newline\)(\(4q)^22 - (44)^22(\newline\)= (44q \times 44q) - (44 \times 44)(\newline\)= 1616q^22 - 1616

More problems from Multiply two binomials: special cases