Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4q+3)(4q3)(4q + 3)(4q - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(4q+3)(4q3)(4q + 3)(4q - 3)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (4q+3)(4q3)(4q + 3)(4q - 3) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (4q+3)(4q3)(4q + 3)(4q - 3) with (a+b)(ab)(a + b)(a - b). a=4qa = 4q b=3b = 3
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (4q+3)(4q3)(4q + 3)(4q - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(4q+3)(4q3)=(4q)2(3)2(4q + 3)(4q - 3) = (4q)^2 - (3)^2
  4. Simplify Expression: Simplify (4q)2(3)2.(4q)^2 - (3)^2.(4q)2(3)2=(4q×4q)(3×3)(4q)^2 - (3)^2 = (4q \times 4q) - (3 \times 3)=16q29= 16q^2 - 9

More problems from Multiply two binomials: special cases