Q. Find the product. Simplify your answer.(4d−4)(4d+4)
Identify Form: Identify the form of the expression.The expression (4d−4)(4d+4) is in the form of (a−b)(a+b), which is a difference of squares.Special case: (a−b)(a+b)=a2−b2
Identify Values: Identify the values of a and b. Compare (4d−4)(4d+4) with (a−b)(a+b). a=4db=4
Apply Formula: Apply the difference of squares formula.Using the formula (a−b)(a+b)=a2−b2, we get:(4d−4)(4d+4)=(4d)2−(4)2
Calculate Squares: Calculate the squares of a and b.(4d)2=16d2(4)2=16
Subtract Squares: Subtract the square of b from the square of a.16d2−16
Write Final Result: Write the final simplified result.The product of (4d−4) and (4d+4) simplified is 16d2−16.
More problems from Multiply two binomials: special cases