Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4d+3)(d1)(4d + 3)(d - 1)

Full solution

Q. Find the product. Simplify your answer.\newline(4d+3)(d1)(4d + 3)(d - 1)
  1. Apply Distributive Property: We need to apply the distributive property to multiply the two binomials (4d+3)(4d + 3) and (d1)(d - 1).(4d+3)(d1)=4d(d1)+3(d1)(4d + 3)(d - 1) = 4d(d - 1) + 3(d - 1)
  2. Distribute 4d4d: Now, distribute 4d4d to both terms in the binomial (d1)(d - 1).\newline4d(d1)=4dd4d14d(d - 1) = 4d \cdot d - 4d \cdot 1\newline=4d24d= 4d^2 - 4d
  3. Distribute 33: Next, distribute 33 to both terms in the binomial (d1)(d - 1).3(d1)=3×d3×13(d - 1) = 3 \times d - 3 \times 1=3d3= 3d - 3
  4. Combine Results: Combine the results from the previous two steps.\newline(4d+3)(d1)=4d24d+3d3(4d + 3)(d - 1) = 4d^2 - 4d + 3d - 3
  5. Combine Like Terms: Combine like terms by adding the coefficients of dd.4d24d+3d3=4d2(4d3d)34d^2 - 4d + 3d - 3 = 4d^2 - (4d - 3d) - 3=4d2d3= 4d^2 - d - 3

More problems from Multiply two binomials