Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer. \newline(4c+3)(c3)(4c + 3)(c - 3)

Full solution

Q. Find the product. Simplify your answer. \newline(4c+3)(c3)(4c + 3)(c - 3)
  1. Apply Distributive Property: Apply the distributive property to multiply the two binomials.\newlineWe need to multiply each term in the first binomial by each term in the second binomial.\newline(4c+3)(c3)=4c(c)+4c(3)+3(c)+3(3)(4c + 3)(c - 3) = 4c(c) + 4c(-3) + 3(c) + 3(-3)
  2. Perform Multiplication: Perform the multiplication for each pair of terms.\newlineNow we multiply the terms together.\newline4c(c)=4c24c(c) = 4c^2\newline4c(3)=12c4c(-3) = -12c\newline3(c)=3c3(c) = 3c\newline3(3)=93(-3) = -9
  3. Combine Like Terms: Combine like terms.\newlineAfter multiplying, we add together the terms that are alike.\newline4c212c+3c94c^2 - 12c + 3c - 9
  4. Simplify Expression: Simplify the expression by combining the like terms.\newlineWe combine 12c-12c and 3c3c to get 9c-9c.\newline4c212c+3c9=4c29c94c^2 - 12c + 3c - 9 = 4c^2 - 9c - 9

More problems from Multiply two binomials