Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4b1)(4b+1)(4b - 1)(4b + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(4b1)(4b+1)(4b - 1)(4b + 1)
  1. Identify special case: Identify the special case for the product (4b1)(4b+1)(4b - 1)(4b + 1). This product is in the form of (ab)(a+b)(a - b)(a + b), which is a difference of squares. Special case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (4b1)(4b+1)(4b - 1)(4b + 1) with (ab)(a+b)(a - b)(a + b). a=4ba = 4b b=1b = 1
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (4b1)(4b+1)(4b - 1)(4b + 1).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(4b1)(4b+1)=(4b)212(4b - 1)(4b + 1) = (4b)^2 - 1^2
  4. Simplify expression: Simplify (4b)212.(4b)^2 - 1^2.(4b)212=(4b×4b)(1×1)=16b21(4b)^2 - 1^2 = (4b \times 4b) - (1 \times 1) = 16b^2 - 1

More problems from Multiply two binomials: special cases