Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(4a3)(4a+3)(4a - 3)(4a + 3)

Full solution

Q. Find the product. Simplify your answer.\newline(4a3)(4a+3)(4a - 3)(4a + 3)
  1. Identify Special Case: Identify the special case that applies to this problem.\newlineThe expression (4a3)(4a+3)(4a - 3)(4a + 3) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (4a3)(4a+3)(4a - 3)(4a + 3) with (ab)(a+b)(a - b)(a + b). a=4aa = 4a b=3b = 3
  3. Apply Difference of Squares: Apply the difference of squares to expand (4a3)(4a+3)(4a - 3)(4a + 3).(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2(4a3)(4a+3)=(4a)2(3)2(4a - 3)(4a + 3) = (4a)^2 - (3)^2
  4. Simplify Expression: Simplify (4a)2(3)2.(4a)^2 - (3)^2.(4a)2(3)2=(4a×4a)(3×3)(4a)^2 - (3)^2 = (4a \times 4a) - (3 \times 3)=16a29= 16a^2 - 9

More problems from Multiply two binomials: special cases