Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3y1)(3y+1)(3y - 1)(3y + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(3y1)(3y+1)(3y - 1)(3y + 1)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (3y1)(3y+1)(3y - 1)(3y + 1) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (3y1)(3y+1)(3y - 1)(3y + 1) with (ab)(a+b)(a - b)(a + b). a=3ya = 3y b=1b = 1
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (3y1)(3y+1)(3y - 1)(3y + 1).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(3y1)(3y+1)=(3y)2(1)2(3y - 1)(3y + 1) = (3y)^2 - (1)^2
  4. Simplify Expression: Simplify (3y)2(1)2.(3y)^2 - (1)^2.(3y)2(1)2=(3y×3y)(1×1)(3y)^2 - (1)^2 = (3y \times 3y) - (1 \times 1)=9y21= 9y^2 - 1

More problems from Multiply two binomials: special cases