Q. Find the product. Simplify your answer.(3x+4)(3x−4)
Identify Form: Identify the form of the expression.The expression (3x+4)(3x−4) is in the form of (a+b)(a−b), which is a difference of squares.Special case: (a+b)(a−b)=a2−b2
Identify Values: Identify the values of a and b. Compare (3x+4)(3x−4) with (a+b)(a−b). a=3xb=4
Apply Formula: Apply the difference of squares formula.Using the values of a and b, we apply the formula (a+b)(a−b)=a2−b2.(3x+4)(3x−4)=(3x)2−(4)2
Calculate Squares: Calculate the squares of a and b.(3x)2=9x2(4)2=16
Subtract Squares: Subtract the square of b from the square of a.9x2−16
More problems from Multiply two binomials: special cases