Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3w+3)(3w3)(3w + 3)(3w - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(3w+3)(3w3)(3w + 3)(3w - 3)
  1. Identify Form: Identify the form of the expression.\newlineThe expression (3w+3)(3w3)(3w + 3)(3w - 3) is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares.\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (3w+3)(3w3)(3w + 3)(3w - 3) with (a+b)(ab)(a + b)(a - b). a=3wa = 3w b=3b = 3
  3. Apply Formula: Apply the difference of squares formula.\newlineUsing the formula (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2, we get:\newline(3w+3)(3w3)=(3w)2(3)2(3w + 3)(3w - 3) = (3w)^2 - (3)^2
  4. Calculate Squares: Calculate the squares of aa and bb.\newline(3w)2=9w2(3w)^2 = 9w^2 (since (3w)×(3w)=9w2(3w) \times (3w) = 9w^2)\newline(3)2=9(3)^2 = 9 (since 3×3=93 \times 3 = 9)
  5. Subtract Squares: Subtract the square of bb from the square of aa. 9w299w^2 - 9

More problems from Multiply two binomials: special cases