Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3p1)(3p+1)(3p - 1)(3p + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(3p1)(3p+1)(3p - 1)(3p + 1)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (3p1)(3p+1)(3p - 1)(3p + 1) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (3p1)(3p+1)(3p - 1)(3p + 1) with (ab)(a+b)(a - b)(a + b). a=3pa = 3p b=1b = 1
  3. Apply Formula: Apply the difference of squares formula to expand (3p1)(3p+1)(3p - 1)(3p + 1).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(3p1)(3p+1)=(3p)2(1)2(3p - 1)(3p + 1) = (3p)^2 - (1)^2
  4. Simplify: Simplify (3p)2(1)2.(3p)^2 - (1)^2.(3p)2(1)2=(3p×3p)(1×1)(3p)^2 - (1)^2 = (3p \times 3p) - (1 \times 1)=9p21= 9p^2 - 1

More problems from Multiply two binomials: special cases