Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3n+3)(3n3)(3n + 3)(3n - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(3n+3)(3n3)(3n + 3)(3n - 3)
  1. Identify Special Case: Identify the special case that applies here.\newlineThe expression (3n+3)(3n3)(3n + 3)(3n - 3) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (3n+3)(3n3)(3n + 3)(3n - 3) with (a+b)(ab)(a + b)(a - b). a=3na = 3n b=3b = 3
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (3n+3)(3n3)(3n + 3)(3n - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(3n+3)(3n3)=(3n)2(3)2(3n + 3)(3n - 3) = (3n)^2 - (3)^2
  4. Simplify Expression: Simplify (3n)2(3)2.(3n)^2 - (3)^2.(3n)2(3)2(3n)^2 - (3)^2=(3n×3n)(3×3)= (3n \times 3n) - (3 \times 3)=9n29= 9n^2 - 9

More problems from Multiply two binomials: special cases