Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3n2)(3n+2)(3n - 2)(3n + 2)

Full solution

Q. Find the product. Simplify your answer.\newline(3n2)(3n+2)(3n - 2)(3n + 2)
  1. Identify Special Case: Identify the special case that applies here.\newline(3n2)(3n+2)(3n - 2)(3n + 2) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (3n2)(3n+2)(3n - 2)(3n + 2) with (ab)(a+b)(a - b)(a + b). a=3na = 3n b=2b = 2
  3. Apply Difference of Squares: Apply the difference of squares to expand (3n2)(3n+2)(3n - 2)(3n + 2).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(3n2)(3n+2)=(3n)2(2)2(3n - 2)(3n + 2) = (3n)^2 - (2)^2
  4. Simplify Expression: Simplify (3n)2(2)2.(3n)^2 - (2)^2.(3n)2(2)2=(3n×3n)(2×2)(3n)^2 - (2)^2 = (3n \times 3n) - (2 \times 2)=9n24= 9n^2 - 4

More problems from Multiply two binomials: special cases