Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3h3)(3h+3)(3h - 3)(3h + 3)

Full solution

Q. Find the product. Simplify your answer.\newline(3h3)(3h+3)(3h - 3)(3h + 3)
  1. Identify special case: Identify the special case for the product (3h3)(3h+3)(3h - 3)(3h + 3). This product is in the form of (ab)(a+b)(a - b)(a + b), which is a difference of squares. Special case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (3h3)(3h+3)(3h - 3)(3h + 3) with (ab)(a+b)(a - b)(a + b). a=3ha = 3h b=3b = 3
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (3h3)(3h+3)(3h - 3)(3h + 3).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(3h3)(3h+3)=(3h)2(3)2(3h - 3)(3h + 3) = (3h)^2 - (3)^2
  4. Simplify expression: Simplify (3h)2(3)2.(3h)^2 - (3)^2.(3h)2(3)2=(3h×3h)(3×3)(3h)^2 - (3)^2 = (3h \times 3h) - (3 \times 3)=9h29= 9h^2 - 9

More problems from Multiply two binomials: special cases