Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3g+2)(3g2)(3g + 2)(3g - 2)

Full solution

Q. Find the product. Simplify your answer.\newline(3g+2)(3g2)(3g + 2)(3g - 2)
  1. Identify Special Case: Identify the special case that applies here.\newline(3g+2)(3g2)(3g + 2)(3g - 2) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (3g+2)(3g2)(3g + 2)(3g - 2) with (a+b)(ab)(a + b)(a - b). a=3ga = 3g b=2b = 2
  3. Apply Difference of Squares: Apply the difference of squares to expand (3g+2)(3g2)(3g + 2)(3g - 2).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(3g+2)(3g2)=(3g)222(3g + 2)(3g - 2) = (3g)^2 - 2^2
  4. Simplify Expression: Simplify (3g)222.(3g)^2 - 2^2.(3g)222=(3g×3g)(2×2)(3g)^2 - 2^2 = (3g \times 3g) - (2 \times 2)=9g24= 9g^2 - 4

More problems from Multiply two binomials: special cases