Q. Find the product. Simplify your answer.−3f2(−3f2+4f)
Distribute −3f2: Distribute −3f2 to each term inside the parentheses.We need to apply the distributive propertya(b+c)=ab+ac.−3f2(−3f2+4f)=−3f2⋅−3f2+−3f2⋅4f
Simplify −3f2×−3f2: Simplify −3f2×−3f2.Multiply the coefficients and add the exponents for f.−3f2×−3f2=9f4
Simplify −3f2×4f: Simplify −3f2×4f.Multiply the coefficients and add the exponents for f.−3f2×4f=−12f3
Combine results: Combine the results from Step 2 and Step 3.We have found:9f4 from Step 2−12f3 from Step 3So, −3f2(−3f2+4f)=9f4−12f3