Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.

(3d+4)(3d-4)

Find the product. Simplify your answer.\newline(3d+4)(3d4) (3 d+4)(3 d-4)

Full solution

Q. Find the product. Simplify your answer.\newline(3d+4)(3d4) (3 d+4)(3 d-4)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (3d+4)(3d4)(3d+4)(3d-4) is in the form of (a+b)(ab)(a+b)(a-b).\newlineSpecial case: (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (3d+4)(3d4)(3d+4)(3d-4) with (a+b)(ab)(a+b)(a-b). a=3da = 3d b=4b = 4
  3. Apply Formula: Apply the difference of squares formula to expand (3d+4)(3d4)(3d+4)(3d-4).\newline(a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2\newline(3d+4)(3d4)=(3d)2(4)2(3d+4)(3d-4) = (3d)^2 - (4)^2
  4. Simplify Expression: Simplify (3d)2(4)2.(3d)^2 - (4)^2.(3d)2(4)2=(3d×3d)(4×4)(3d)^2 - (4)^2 = (3d \times 3d) - (4 \times 4)=9d216= 9d^2 - 16

More problems from Multiply two binomials: special cases