Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer. \newline(3b4)(3b+3)(3b - 4)(3b + 3)

Full solution

Q. Find the product. Simplify your answer. \newline(3b4)(3b+3)(3b - 4)(3b + 3)
  1. Apply Distributive Property: Apply the distributive property to multiply the two binomials.\newline(3b4)(3b+3)=3b(3b+3)4(3b+3)(3b - 4)(3b + 3) = 3b(3b + 3) - 4(3b + 3)
  2. Multiply 3b3b by Binomial: Multiply 3b3b by each term in the binomial (3b+3)(3b + 3).3b(3b+3)=3b(3b)+3b(3)=9b2+9b3b(3b + 3) = 3b(3b) + 3b(3) = 9b^2 + 9b
  3. Multiply 4-4 by Binomial: Multiply 4-4 by each term in the binomial (3b+3)(3b + 3).4(3b+3)=4(3b)4(3)=12b12-4(3b + 3) = -4(3b) - 4(3) = -12b - 12
  4. Combine Results: Combine the results from Step 22 and Step 33.\newline(3b4)(3b+3)=9b2+9b12b12(3b - 4)(3b + 3) = 9b^2 + 9b - 12b - 12
  5. Combine Like Terms: Combine like terms.\newline9b2+9b12b12=9b23b129b^2 + 9b - 12b - 12 = 9b^2 - 3b - 12

More problems from Multiply two binomials