Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(3a2)(3a+2)(3a - 2)(3a + 2)

Full solution

Q. Find the product. Simplify your answer.\newline(3a2)(3a+2)(3a - 2)(3a + 2)
  1. Identify special case: Identify the special case that applies to this problem.\newlineThe expression (3a2)(3a+2)(3a - 2)(3a + 2) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (3a2)(3a+2)(3a - 2)(3a + 2) with (ab)(a+b)(a - b)(a + b). a=3aa = 3a b=2b = 2
  3. Apply difference of squares formula: Apply the difference of squares formula to expand (3a2)(3a+2)(3a - 2)(3a + 2).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(3a2)(3a+2)=(3a)2(2)2(3a - 2)(3a + 2) = (3a)^2 - (2)^2
  4. Simplify expression: Simplify (3a)2(2)2.(3a)^2 - (2)^2.(3a)2(2)2=(3a×3a)(2×2)(3a)^2 - (2)^2 = (3a \times 3a) - (2 \times 2)=9a24= 9a^2 - 4

More problems from Multiply two binomials: special cases