Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2x+3)(2x3)(2x + 3)(2x - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(2x+3)(2x3)(2x + 3)(2x - 3)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (2x+3)(2x3)(2x + 3)(2x - 3) is in the form of (a+b)(ab)(a + b)(a - b).\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (2x+3)(2x3)(2x + 3)(2x - 3) with (a+b)(ab)(a + b)(a - b). a=2xa = 2x b=3b = 3
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (2x+3)(2x3)(2x + 3)(2x - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(2x+3)(2x3)=(2x)2(3)2(2x + 3)(2x - 3) = (2x)^2 - (3)^2
  4. Simplify Expression: Simplify (2x)2(3)2.(2x)^2 - (3)^2.(2x)2(3)2=(2x2x)(33)(2x)^2 - (3)^2 = (2x \cdot 2x) - (3 \cdot 3)=4x29= 4x^2 - 9

More problems from Multiply two binomials: special cases