Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2v3)(2v+3)(2v - 3)(2v + 3)

Full solution

Q. Find the product. Simplify your answer.\newline(2v3)(2v+3)(2v - 3)(2v + 3)
  1. Identify Special Case: Identify the special case for the given expression.\newlineThe expression (2v3)(2v+3)(2v - 3)(2v + 3) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (2v3)(2v+3)(2v - 3)(2v + 3) with (ab)(a+b)(a - b)(a + b). a=2va = 2v b=3b = 3
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (2v3)(2v+3)(2v - 3)(2v + 3).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(2v3)(2v+3)=(2v)2(3)2(2v - 3)(2v + 3) = (2v)^2 - (3)^2
  4. Simplify Expression: Simplify (2v)2(3)2.(2v)^2 - (3)^2.(2v)2(3)2=(2v×2v)(3×3)(2v)^2 - (3)^2 = (2v \times 2v) - (3 \times 3)=4v29= 4v^2 - 9

More problems from Multiply two binomials: special cases