Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2v1)(2v+1)(2v - 1)(2v + 1)

Full solution

Q. Find the product. Simplify your answer.\newline(2v1)(2v+1)(2v - 1)(2v + 1)
  1. Identify Special Case: Identify the special case that applies here.\newline(2v1)(2v+1)(2v - 1)(2v + 1) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (2v1)(2v+1)(2v - 1)(2v + 1) with (ab)(a+b)(a - b)(a + b). a=2va = 2v b=1b = 1
  3. Apply Difference of Squares: Apply the difference of squares to expand (2v1)(2v+1)(2v - 1)(2v + 1).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(2v1)(2v+1)=(2v)212(2v - 1)(2v + 1) = (2v)^2 - 1^2
  4. Simplify Expression: Simplify (2v)212.(2v)^2 - 1^2.(2v)212=(2v×2v)(1×1)(2v)^2 - 1^2 = (2v \times 2v) - (1 \times 1)=4v21= 4v^2 - 1

More problems from Multiply two binomials: special cases