Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2u4)(2u+4)(2u - 4)(2u + 4)

Full solution

Q. Find the product. Simplify your answer.\newline(2u4)(2u+4)(2u - 4)(2u + 4)
  1. Identify form of expression: Identify the form of the expression.\newlineThe expression (2u4)(2u+4)(2u - 4)(2u + 4) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify values of aa and bb: Identify the values of aa and bb. Compare (2u4)(2u+4)(2u - 4)(2u + 4) with (ab)(a+b)(a - b)(a + b). a=2ua = 2u b=4b = 4
  3. Apply difference of squares formula: Apply the difference of squares formula.\newlineUsing the formula (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2, we get:\newline(2u4)(2u+4)=(2u)2(4)2(2u - 4)(2u + 4) = (2u)^2 - (4)^2
  4. Calculate squares of a and b: Calculate the squares of aa and bb.(2u)2=4u2(2u)^2 = 4u^2(4)2=16(4)^2 = 16
  5. Subtract squares of aa and bb: Subtract the square of bb from the square of aa.4u2164u^2 - 16

More problems from Multiply two binomials: special cases