Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2u+2)(2u2)(2u + 2)(2u - 2)

Full solution

Q. Find the product. Simplify your answer.\newline(2u+2)(2u2)(2u + 2)(2u - 2)
  1. Identify aa and bb: We are asked to find the product of two binomials: (2u+2)(2u2)(2u + 2)(2u - 2). This is a difference of squares problem, which follows the formula (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2.
  2. Apply formula: Identify the values of aa and bb. In the expression (2u+2)(2u2)(2u + 2)(2u - 2), aa is 2u2u and bb is 22.
  3. Simplify result: Apply the difference of squares formula to expand (2u+2)(2u2)(2u + 2)(2u - 2).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(2u+2)(2u2)=(2u)2(2)2(2u + 2)(2u - 2) = (2u)^2 - (2)^2
  4. Simplify result: Apply the difference of squares formula to expand (2u+2)(2u2)(2u + 2)(2u - 2).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(2u+2)(2u2)=(2u)2(2)2(2u + 2)(2u - 2) = (2u)^2 - (2)^2 Simplify (2u)2(2)2(2u)^2 - (2)^2.\newline(2u)2(2)2=(2u2u)(22)(2u)^2 - (2)^2 = (2u \cdot 2u) - (2 \cdot 2)\newline=4u24= 4u^2 - 4

More problems from Multiply two binomials: special cases