Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2t2)(2t+2)(2t - 2)(2t + 2)

Full solution

Q. Find the product. Simplify your answer.\newline(2t2)(2t+2)(2t - 2)(2t + 2)
  1. Identify Special Case: Identify the special case that applies here.\newlineThe expression (2t2)(2t+2)(2t - 2)(2t + 2) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (2t2)(2t+2)(2t - 2)(2t + 2) with (ab)(a+b)(a - b)(a + b). a=2ta = 2t b=2b = 2
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (2t2)(2t+2)(2t - 2)(2t + 2).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(2t2)(2t+2)=(2t)2(2)2(2t - 2)(2t + 2) = (2t)^2 - (2)^2
  4. Simplify Expression: Simplify (\(2t)^22 - (22)^22.(\newline\)(\(2t)^22 - (22)^22(\newline\)= (22t \cdot 22t) - (22 \cdot 22)(\newline\)= 44t^22 - 44

More problems from Multiply two binomials: special cases