Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2r3)(2r+3)(2r - 3)(2r + 3)

Full solution

Q. Find the product. Simplify your answer.\newline(2r3)(2r+3)(2r - 3)(2r + 3)
  1. Special Case Identification: Which special case applies here?\newline(2r3)(2r+3)(2r - 3)(2r + 3) is in the form of (ab)(a+b)(a - b)(a + b).\newlineSpecial case: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2
  2. Values of aa and bb: Identify the values of aa and bb. Compare (2r3)(2r+3)(2r - 3)(2r + 3) with (ab)(a+b)(a - b)(a + b). a=2ra = 2r b=3b = 3
  3. Difference of Squares Application: Apply the difference of squares to expand (2r3)(2r+3)(2r - 3)(2r + 3).\newline(ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2\newline(2r3)(2r+3)=(2r)2(3)2(2r - 3)(2r + 3) = (2r)^2 - (3)^2
  4. Simplification: Simplify (2r)2(3)2.(2r)^2 - (3)^2.(2r)2(3)2=(2r×2r)(3×3)(2r)^2 - (3)^2 = (2r \times 2r) - (3 \times 3)=4r29= 4r^2 - 9

More problems from Multiply two binomials: special cases