Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer. \newline(2j+4)(4j1)(2j + 4)(4j - 1)

Full solution

Q. Find the product. Simplify your answer. \newline(2j+4)(4j1)(2j + 4)(4j - 1)
  1. Apply Distributive Property: Apply the distributive property to multiply the two binomials (2j+4)(2j + 4) and (4j1)(4j - 1).(2j+4)(4j1)=2j(4j1)+4(4j1)(2j + 4)(4j - 1) = 2j(4j - 1) + 4(4j - 1)
  2. Multiply 2j2j by Binomial: Multiply 2j2j by each term in the binomial (4j1)(4j - 1).\newline2j(4j1)=2j×4j2j×12j(4j - 1) = 2j \times 4j - 2j \times 1\newline=8j22j= 8j^2 - 2j
  3. Multiply 44 by Binomial: Multiply 44 by each term in the binomial (4j1)(4j - 1). \newline4(4j1)=4×4j4×14(4j - 1) = 4 \times 4j - 4 \times 1\newline=16j4= 16j - 4
  4. Combine Results: Combine the results from Step 22 and Step 33.\newline(2j+4)(4j1)=8j22j+16j4(2j + 4)(4j - 1) = 8j^2 - 2j + 16j - 4
  5. Combine Like Terms: Combine like terms.\newline8j22j+16j4=8j2+(16j2j)48j^2 - 2j + 16j - 4 = 8j^2 + (16j - 2j) - 4\newline=8j2+14j4= 8j^2 + 14j - 4

More problems from Multiply two binomials