Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer.\newline(2j+3)(2j3)(2j + 3)(2j - 3)

Full solution

Q. Find the product. Simplify your answer.\newline(2j+3)(2j3)(2j + 3)(2j - 3)
  1. Identify Special Case: Identify the special case that applies to the given expression.\newlineThe expression (2j+3)(2j3)(2j + 3)(2j - 3) is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares.\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values of aa and bb: Identify the values of aa and bb. Compare (2j+3)(2j3)(2j + 3)(2j - 3) with (a+b)(ab)(a + b)(a - b). a=2ja = 2j b=3b = 3
  3. Apply Difference of Squares Formula: Apply the difference of squares formula to expand (2j+3)(2j3)(2j + 3)(2j - 3).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(2j+3)(2j3)=(2j)2(3)2(2j + 3)(2j - 3) = (2j)^2 - (3)^2
  4. Simplify Expression: Simplify (2j)2(3)2.(2j)^2 - (3)^2.(2j)2(3)2=(2j2j)(33)(2j)^2 - (3)^2 = (2j \cdot 2j) - (3 \cdot 3)=4j29= 4j^2 - 9

More problems from Multiply two binomials: special cases