Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the product. Simplify your answer. \newline(2f+4)(2f4)(2f + 4)(2f - 4)

Full solution

Q. Find the product. Simplify your answer. \newline(2f+4)(2f4)(2f + 4)(2f - 4)
  1. Identify Form: Identify the form of the expression.\newlineThe expression (2f+4)(2f4)(2f + 4)(2f - 4) is in the form of (a+b)(ab)(a + b)(a - b), which is a difference of squares.\newlineSpecial case: (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
  2. Identify Values: Identify the values of aa and bb. Compare (2f+4)(2f4)(2f + 4)(2f - 4) with (a+b)(ab)(a + b)(a - b). a=2fa = 2f b=4b = 4
  3. Apply Formula: Apply the difference of squares formula to expand (2f+4)(2f4)(2f + 4)(2f - 4).\newline(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2\newline(2f+4)(2f4)=(2f)2(4)2(2f + 4)(2f - 4) = (2f)^2 - (4)^2
  4. Simplify: Simplify (2f)2(4)2.(2f)^2 - (4)^2.(2f)2(4)2=(2f×2f)(4×4)(2f)^2 - (4)^2 = (2f \times 2f) - (4 \times 4)=4f216= 4f^2 - 16

More problems from Multiply two binomials: special cases