Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find the product. Simplify your answer.
\newline
(
2
f
−
2
)
(
2
f
+
2
)
(2f - 2)(2f + 2)
(
2
f
−
2
)
(
2
f
+
2
)
View step-by-step help
Home
Math Problems
Algebra 1
Multiply two binomials: special cases
Full solution
Q.
Find the product. Simplify your answer.
\newline
(
2
f
−
2
)
(
2
f
+
2
)
(2f - 2)(2f + 2)
(
2
f
−
2
)
(
2
f
+
2
)
Identify Problem Structure:
Identify the structure of the problem.
\newline
The problem
(
2
f
−
2
)
(
2
f
+
2
)
(2f - 2)(2f + 2)
(
2
f
−
2
)
(
2
f
+
2
)
is in the form of
(
a
−
b
)
(
a
+
b
)
(a - b)(a + b)
(
a
−
b
)
(
a
+
b
)
.
\newline
Special case:
(
a
−
b
)
(
a
+
b
)
=
a
2
−
b
2
(a - b)(a + b) = a^2 - b^2
(
a
−
b
)
(
a
+
b
)
=
a
2
−
b
2
Identify Values of
a
a
a
and
b
b
b
:
Identify the values of
a
a
a
and
b
b
b
. Compare
(
2
f
−
2
)
(
2
f
+
2
)
(2f - 2)(2f + 2)
(
2
f
−
2
)
(
2
f
+
2
)
with
(
a
−
b
)
(
a
+
b
)
(a - b)(a + b)
(
a
−
b
)
(
a
+
b
)
.
a
=
2
f
a = 2f
a
=
2
f
b
=
2
b = 2
b
=
2
Apply Difference of Squares Formula:
Apply the difference of squares formula to expand
(
2
f
−
2
)
(
2
f
+
2
)
(2f - 2)(2f + 2)
(
2
f
−
2
)
(
2
f
+
2
)
.
\newline
(
a
−
b
)
(
a
+
b
)
=
a
2
−
b
2
(a - b)(a + b) = a^2 - b^2
(
a
−
b
)
(
a
+
b
)
=
a
2
−
b
2
\newline
(
2
f
−
2
)
(
2
f
+
2
)
=
(
2
f
)
2
−
(
2
)
2
(2f - 2)(2f + 2) = (2f)^2 - (2)^2
(
2
f
−
2
)
(
2
f
+
2
)
=
(
2
f
)
2
−
(
2
)
2
Simplify Expression:
Simplify
(
2
f
)
2
−
(
2
)
2
.
(2f)^2 - (2)^2.
(
2
f
)
2
−
(
2
)
2
.
(
2
f
)
2
−
(
2
)
2
=
(
2
f
×
2
f
)
−
(
2
×
2
)
(2f)^2 - (2)^2 = (2f \times 2f) - (2 \times 2)
(
2
f
)
2
−
(
2
)
2
=
(
2
f
×
2
f
)
−
(
2
×
2
)
=
4
f
2
−
4
= 4f^2 - 4
=
4
f
2
−
4
More problems from Multiply two binomials: special cases
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant