Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the positive solution of the equation.

4x^((4)/(3))-12=26232
Answer:

Find the positive solution of the equation.\newline4x4312=26232 4 x^{\frac{4}{3}}-12=26232 \newlineAnswer:

Full solution

Q. Find the positive solution of the equation.\newline4x4312=26232 4 x^{\frac{4}{3}}-12=26232 \newlineAnswer:
  1. Add 1212 to isolate: Add 1212 to both sides of the equation to isolate the term with the variable.\newline4x4312+12=26232+124x^{\frac{4}{3}} - 12 + 12 = 26232 + 12\newline4x43=262444x^{\frac{4}{3}} = 26244
  2. Divide by 44: Divide both sides of the equation by 44 to solve for x43x^{\frac{4}{3}}.\newline4x434=262444\frac{4x^{\frac{4}{3}}}{4} = \frac{26244}{4}\newlinex43=6561x^{\frac{4}{3}} = 6561
  3. Take cube root: Take the cube root of both sides to solve for x43x^{\frac{4}{3}}.\newline(x43)34=656134(x^{\frac{4}{3}})^{\frac{3}{4}} = 6561^{\frac{3}{4}}\newlinex=656134x = 6561^{\frac{3}{4}}
  4. Calculate value: Calculate the value of 6561346561^{\frac{3}{4}}.\newlineSince 6561=8126561 = 81^2 and 81=3481 = 3^4, we can rewrite 6561346561^{\frac{3}{4}} as (34)34(3^4)^{\frac{3}{4}}.\newlinex=(34)34x = (3^4)^{\frac{3}{4}}\newlinex=3434x = 3^{4 \cdot \frac{3}{4}}\newlinex=33x = 3^3\newlinex=27x = 27

More problems from Composition of linear and quadratic functions: find a value